[연구] 석사과정 이윤정, SCIE 논문지(MDPI Energies/Q1) 게재
- 스마트팩토리융합학과
- 조회수428
- 2025-02-07
석사과정 이윤정 학생(지도교수 : 정종필)의 연구(TSMixer- and Transfer Learning-Based Highly Reliable Prediction with Short-Term Time Series Data in Small-Scale Solar Power Generation Systems)가 MDPI Energies(Impact Factor: 3.0 (2023); 5-Year Impact Factor: 3.0 (2023))에 게재됐다.
https://www.mdpi.com/1996-1073/18/4/765 or https://doi.org/10.3390/en18040765
논문요약 - With the surge in energy demand worldwide, renewable energy is becoming increasingly important. Solar power, in particular, is positioning itself as a sustainable and environmentally friendly alternative, and is increasingly playing a role not only in large-scale power plants but also in small-scale home power generation systems. However, small-scale power generation systems face challenges in the development of efficient prediction models because of the lack of data and variability in power generation owing to weather conditions. In this study, we propose a novel forecasting framework that combines transfer learning and dynamic time warping (DTW) to address these issues. We present a transfer learning-based prediction system design that can maintain high prediction performance even in data-poor environments. In the process of developing a prediction model suitable for the target domain by utilizing multi-source data, we propose a data similarity evaluation method using DTW, which demonstrates excellent performance with low error rates in the MSE and MAE metrics compared with conventional long short-term memory (LSTM) and Transformer models. This research not only contributes to maximizing the energy efficiency of small-scale PV power generation systems and improving energy independence but also provides a methodology that can maintain high reliability in data-poor environments.